Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
This investigation has presented an approach to Extractive Automatic Text Summarization (EATS). A framework focused on the summary of a single document has been developed, using the Tf-ldf method (Frequency Term, Inverse Document Frequency) as a reference, dividing the document into a subset of documents and generating value of each of the words contained in each document, those documents that show Tf-Idf equal or higher than the threshold are those that represent greater importance, therefore; can be weighted and generate a text summary according to the user’s request. This document represents a derived model of text mining application in today’s world. We demonstrate the way of performing the summarization. Random values were used to check its performance. The experimented results show a satisfactory and understandable summary and summaries were found to be able to run efficiently and quickly, showing which are the most important text sentences according to the threshold selected by the user....
The energy of sensor nodes in wireless sensor networks is limited, which is one of the most important challenges due to the lack of a fixed power supply. Because data transmission consumes the most energy of nodes, a node that transmits more packets runs out of energy faster than the others. When the energy of a node comes to the end of a network, the process of network operation may be disrupted. In this case, critical information in the network with the desired quality may not reach the hole and eventually the base stations. Therefore, considering the dynamic topology and distributed nature of wireless sensor networks, designing energyefficient routing protocols is the main challenge. In this paper, an energy-aware routing protocol based on a multiobjective particle swarm optimization algorithm is presented. In the proposed particle swarm optimization algorithm method, the proportionality function for selecting the optimal threaded node is set based on the goals related to service quality including residual energy, link quality, end-to-end delay, and delivery rate. The simulation results show that the proposed method consumes less energy and has a longer lifespan compared with the state-of-the-art methods due to balancing the goals related to service quality criteria....
In the advancements in computation and communication technologies and increasing number of vehicles, the concept of Internet of Vehicles (IoV) has emerged as an integral part of daily life, and it can be used to acquire vehicle related information including road congestion, road description, vehicle location, and speed. Such information is very vital and can benefit in a variety of ways, including route selection. However, without proper security measures, the information transmission among entities of IoV can be exposed and used for wicked intentions. Recently, many authentication schemes were proposed, but most of those authentication schemes are prone to insecurities or suffer from heavy communication and computation costs. (erefore, a secure message authentication protocol is proposed in this study for information exchange among entities of IoV (SMEP-IoV). Based on secure symmetric lightweight hash functions and encryption operations, the proposed SMEP-IoV meets IoV security and performance requirements. For formal security analysis of the proposed SMEP-IoV, BAN logic is used. (e performance comparisons show that the SMEP-IoV is lightweight and completes the authentication process in just 0.198ms....
This paper explores the secrecy analysis of a multihop hybrid satellite-terrestrial relay network (HSTRN) with jamming, where one satellite source is aimed at communicating with destination users via multihop decode-and-forward (DF) terrestrial relays, in the existence of an eavesdropper. All the destination users are deployed randomly following a homogeneous Poisson point process (PPP) based on stochastic geometry. Each relay operates not only as a conventional DF relay to forward the received signal but also as a jammer to generate intentional interference to degrade the eavesdropper link, considering shadowed-Rician fading for legitimate link and wiretap link while Rayleigh fading for jamming link. To characterize the secrecy performance of the considered network, the accurate analytical expression for the secrecy outage probability (SOP) is derived. In order to reveal further insights on the achievable diversity order of the network, the asymptotic behavior of SOP expression at high signal-tonoise ratio (SNR) region is deduced. Moreover, the throughput of the system is discussed to characterize the secrecy performance. Finally, the theoretical results are validated through comparison with simulation results and show that (1) the secrecy performance of the considered network gets better with the decreasing of the hops and with the decreasing severity of the channel fading scenario, (2) the relay of the network operating as a jammer can provide better secrecy performance without extra network resources, and (3) small hops and high SNR can yield to high throughput of the system....
xCalamities such as earthquakes and tsunami affect communication services by devastating the communication network and electrical infrastructure. Multihop relay networks can be deployed to restore the communication environment quickly in catastrophe-stricken areas. However, performance in terms of throughput is affected by deploying the relay networks. In wireless local area networks (WLANs), the primary purpose of multiband transmission employing multihop relay networks is to increase the throughput and reduce the latency. In the future, wireless networks are believed to carry high throughput, more data rates, and less latency by expanding bandwidth-demanding applications. Simultaneous multiband transmission in WLAN systems is considered to increase the coverage area without power escalation. Due to the inherent characteristics of different bands and channel conditions, transmission rates tend to be different. The impact of such conditions may cater to the disproportional distribution of data among bands, causing some of the bands to be overwhelmed, which incurs buffer overflow and packet loss. In contrast, the channel capacity of some of the bands remains underutilized. In this paper, we consider the channel conditions and transmission rates of each band on either side of the relay to address the problems mentioned above. Furthermore, this paper proposes a load distribution-based end-to-end traffic scheduling technique to improve system performance. The simulation results demonstrate the effectiveness of our proposed method with maximizing throughput and minimizing end-to-end delay....
Loading....